Church Turing Thesis :
Turing machine is defined as an abstract representation of a computing device such as hardware in computers. Alan Turing proposed Logical Computing Machines (LCMs), i.e. Turing’s expressions for Turing Machines. This was done to define algorithms properly. So, Church made a mechanical method named as ‘M’ for manipulation of strings by using logic and mathematics.
This method M must pass the following statements:
- Number of instructions in M must be finite.
- Output should be produced after performing finite number of steps.
- It should not be imaginary, i.e. can be made in real life.
- It should not require any complex understanding.
Using these statements Church proposed a hypothesis called Church’s Turing thesis that can be stated as: “The assumption that the intuitive notion of computable functions can be identified with partial recursive functions.”
In 1930, this statement was first formulated by Alonzo Church and is usually referred to as Church’s thesis, or the Church-Turing thesis. However, this hypothesis cannot be proved.
The recursive functions can be computable after taking following assumptions:
- Each and every function must be computable.
- Let ‘F’ be the computable function and after performing some elementary operations to ‘F’, it will transform a new function ‘G’ then this function ‘G’ automatically becomes the computable function.
- If any functions that follow above two assumptions must be states as computable function.
The Church-Turing thesis says that every solvable decision problem can be transformed into an equivalent Turing machine problem.
It can be explained in two ways, as given below −
- The Church-Turing thesis for decision problems.
- The extended Church-Turing thesis for decision problems.
Let us understand these two ways.
The Church-Turing thesis for decision problems
There is some effective procedure to solve any decision problem if and only if there is a Turing machine which halts for all input strings and solves the problem.
The extended Church-Turing thesis for decision problems
A decision problem Q is said to be partially solvable if and only if there is a Turing machine which accepts precisely the elements of Q whose answer is yes.
Proof
A proof by the Church-Turing thesis is a shortcut often taken in establishing the existence of a decision algorithm.
For any decision problem, rather than constructing a Turing machine solution, let us describe an effective procedure which solves the problem.
The Church-Turing thesis explains that a decision problem Q has a solution if and only if there is a Turing machine that determines the answer for every q ϵ Q. If no such Turing machine exists, the problem is said to be undecidable.
 English
 English Afrikaans
 Afrikaans Albanian
 Albanian Amharic
 Amharic Arabic
 Arabic Armenian
 Armenian Azerbaijani
 Azerbaijani Basque
 Basque Belarusian
 Belarusian Bengali
 Bengali Bosnian
 Bosnian Bulgarian
 Bulgarian Catalan
 Catalan Cebuano
 Cebuano Chichewa
 Chichewa Chinese (Simplified)
 Chinese (Simplified) Chinese (Traditional)
 Chinese (Traditional) Corsican
 Corsican Croatian
 Croatian Czech
 Czech Danish
 Danish Dutch
 Dutch Esperanto
 Esperanto Estonian
 Estonian Filipino
 Filipino Finnish
 Finnish French
 French Frisian
 Frisian Galician
 Galician Georgian
 Georgian German
 German Greek
 Greek Gujarati
 Gujarati Haitian Creole
 Haitian Creole Hausa
 Hausa Hawaiian
 Hawaiian Hebrew
 Hebrew Hindi
 Hindi Hmong
 Hmong Hungarian
 Hungarian Icelandic
 Icelandic Igbo
 Igbo Indonesian
 Indonesian Irish
 Irish Italian
 Italian Japanese
 Japanese Javanese
 Javanese Kannada
 Kannada Kazakh
 Kazakh Khmer
 Khmer Korean
 Korean Kurdish (Kurmanji)
 Kurdish (Kurmanji) Kyrgyz
 Kyrgyz Lao
 Lao Latin
 Latin Latvian
 Latvian Lithuanian
 Lithuanian Luxembourgish
 Luxembourgish Macedonian
 Macedonian Malagasy
 Malagasy Malay
 Malay Malayalam
 Malayalam Maltese
 Maltese Maori
 Maori Marathi
 Marathi Mongolian
 Mongolian Myanmar (Burmese)
 Myanmar (Burmese) Nepali
 Nepali Norwegian
 Norwegian Pashto
 Pashto Persian
 Persian Polish
 Polish Portuguese
 Portuguese Punjabi
 Punjabi Romanian
 Romanian Russian
 Russian Samoan
 Samoan Scottish Gaelic
 Scottish Gaelic Serbian
 Serbian Sesotho
 Sesotho Shona
 Shona Sindhi
 Sindhi Sinhala
 Sinhala Slovak
 Slovak Slovenian
 Slovenian Somali
 Somali Spanish
 Spanish Sudanese
 Sudanese Swahili
 Swahili Swedish
 Swedish Tajik
 Tajik Tamil
 Tamil Telugu
 Telugu Thai
 Thai Turkish
 Turkish Ukrainian
 Ukrainian Urdu
 Urdu Uzbek
 Uzbek Vietnamese
 Vietnamese Welsh
 Welsh Xhosa
 Xhosa Yiddish
 Yiddish Yoruba
 Yoruba Zulu
 Zulu